Posts from June 2022 (18)

June 21, 2022

NRL Predictions for Round 16

Team Ratings for Round 16

The basic method is described on my Department home page.
Here are the team ratings prior to this week’s games, along with the ratings at the start of the season.

Current Rating Rating at Season Start Difference
Panthers 17.27 14.26 3.00
Storm 15.63 19.20 -3.60
Rabbitohs 5.86 15.81 -10.00
Sea Eagles 4.87 10.99 -6.10
Cowboys 2.43 -12.27 14.70
Roosters 2.35 2.23 0.10
Eels 2.20 2.54 -0.30
Sharks 0.38 -1.10 1.50
Broncos 0.16 -8.90 9.10
Raiders -1.79 -1.10 -0.70
Dragons -5.65 -7.99 2.30
Titans -6.06 1.05 -7.10
Bulldogs -7.34 -10.25 2.90
Knights -9.86 -6.54 -3.30
Warriors -10.73 -8.99 -1.70
Wests Tigers -11.70 -10.94 -0.80

 

Performance So Far

So far there have been 116 matches played, 82 of which were correctly predicted, a success rate of 70.7%.
Here are the predictions for last week’s games.

Game Date Score Prediction Correct
1 Dragons vs. Rabbitohs Jun 16 32 – 12 -12.10 FALSE
2 Sea Eagles vs. Cowboys Jun 17 26 – 28 6.50 FALSE
3 Storm vs. Broncos Jun 17 32 – 20 19.70 TRUE
4 Sharks vs. Titans Jun 18 18 – 10 9.70 TRUE
5 Warriors vs. Panthers Jun 18 6 – 40 -20.90 TRUE
6 Eels vs. Roosters Jun 18 26 – 16 1.80 TRUE
7 Raiders vs. Knights Jun 19 20 – 18 12.40 TRUE
8 Bulldogs vs. Wests Tigers Jun 19 36 – 12 5.10 TRUE

 

Predictions for Round 16

Here are the predictions for Round 16. The prediction is my estimated expected points difference with a positive margin being a win to the home team, and a negative margin a win to the away team.

Game Date Winner Prediction
1 Sea Eagles vs. Storm Jun 30 Storm -7.80
2 Knights vs. Titans Jul 01 Titans -0.80
3 Panthers vs. Roosters Jul 01 Panthers 17.90
4 Bulldogs vs. Sharks Jul 02 Sharks -4.70
5 Cowboys vs. Broncos Jul 02 Cowboys 5.30
6 Rabbitohs vs. Eels Jul 02 Rabbitohs 6.70
7 Warriors vs. Wests Tigers Jul 03 Warriors 6.50
8 Dragons vs. Raiders Jul 03 Raiders -0.90

 

Top 14 Predictions for the Final

Team Ratings for the Final

The basic method is described on my Department home page.
Here are the team ratings prior to this week’s games, along with the ratings at the start of the season.

Current Rating Rating at Season Start Difference
La Rochelle 7.78 6.78 1.00
Stade Toulousain 7.44 6.83 0.60
Bordeaux-Begles 6.06 5.42 0.60
Racing-Metro 92 5.75 6.13 -0.40
Clermont Auvergne 4.78 5.09 -0.30
RC Toulonnais 4.50 1.82 2.70
Montpellier 3.93 -0.01 3.90
Castres Olympique 3.61 0.94 2.70
Lyon Rugby 3.61 4.15 -0.50
Stade Francais Paris -0.71 1.20 -1.90
Section Paloise -1.81 -2.25 0.40
USA Perpignan -3.05 -2.78 -0.30
Brive -4.06 -3.19 -0.90
Biarritz -10.48 -2.78 -7.70

 

Performance So Far

So far there have been 185 matches played, 133 of which were correctly predicted, a success rate of 71.9%.
Here are the predictions for last week’s games.

Game Date Score Prediction Correct
1 Castres Olympique vs. Stade Toulousain Jun 18 24 – 18 -4.60 FALSE
2 Montpellier vs. Bordeaux-Begles Jun 19 19 – 10 -3.00 FALSE

 

Predictions for the Final

Here are the predictions for the Final. The prediction is my estimated expected points difference with a positive margin being a win to the home team, and a negative margin a win to the away team.

Game Date Winner Prediction
1 Castres Olympique vs. Montpellier Jun 25 Montpellier -0.30

 

June 18, 2022

Some Questions About Rugby and Rugby League Predictions

I have been asked a number of questions about the predictions I post for Rugby and Rugby League competitions. Here are some questions and my answers.

Fascinated by your model and appreciate your input, ever considered doing AFL? (Daniel Levis)

The methodology I use is based on the work of Stephen Clarke and others at Swinburne University and was used for predicting AFL.

My predictions developed from a request to have purely statistical predictions for a TV program. I looked for a quickly implementable approach and chose the exponential smoothing approach because of the minimal data requirements and my knowledge that exponential smoothing is an excellent method for forecasting which is simple to implement.

I am very familiar with AFL as a lifelong Collingwood supporter who grew up in Victoria. I am predicting a number of competitions now which is only possible because I have been able to automate most of the work of obtaining data, creating the predictions and posting them. I have enough to do as just one person with that, so am not keen to take on extra competitions. The cancellations and variations during the covid epidemic have been very time-consuming also, because they can’t be easily automated, but require a lot of individual modification and data entry which is time-consuming and error-prone.

Hi David, when assessing a team, how many points do you think a ‘Home Ground’ advantage should be? (Dr Douglas Wilde)

I aim for my predictions to be statistically based and free of subjectivity as far as possible so I select the home ground advantage as a parameter in my models based on past data.

For each competition I do a grid search over all the parameters in the model to select values which give the best predictions over a number of years. There are actually two home ground advantage parameters for some of the competitions, one for games between two teams from the same country and another where the teams are from a different country.

Home ground advantage is a question where some subjectivity arises. In the NRL for example when two Sydney teams are playing each other, should home ground advantage apply? I do apply it except when they have the same home ground, based on my reading about home ground advantage in other sports. Also what to do about the Warriors based in Australia? Or in Super Rugby the Fijian Drua based in Australia?

Can you explain briefly how we could use the percentage/performance to do calculations ourselves or it is to difficult and can only be done by you? (Eugene Matthew)

My short answer is that I don’t think you could do that.

First of all there is the data problem. My predictions essentially give the mean number of points difference between the first team score and the second team score. To start assigning probabilities to even the probability of the first team winning, you need to model the distribution around that mean value, and for that you require the errors observed in the past as the basic data to model the distribution.

You then have to model the distribution, which is not as straight forward as you might imagine, because the distribution of errors is not a normal distribution, it is heavy-tailed. As it happens I am quite experienced at modelling heavy-tailed distributions since I have written a number of R software packages to handle distributions of that sort which are commonly used in mathematical finance. I have in the past done a preliminary exercise modelling the errors but nothing suitable for prime time.

There have also been requests for probabilities of margins being in particular ranges: 0 to 12, or larger. Here you start to run into problems of accuracy. My guess without doing some actual investigation is that those probabilities would be highly variable.

That sort of calculation is likely done by betting companies which I have at their disposal qualified statisticians and substantial computing power. Talking to betting company statisticians, they have told me that even outside of the betting companies, professional gamblers these days use a lot of data and computer analysis to inform their betting.

It is important to remember here that the only data I use are the scores of past games and home ground advantage.

All in all I think your predictions are very good and could all be near perfect if players had values also like the home advantage value it would make some games more accurate since they are the most important part of the predictions/stats.
example; cowboys vs Storms a few weeks back when Papenhouzen, RSmith, Solomona and Hugh’s didn’t play causing your stats to be significantly wrong. (Eugene Matthew)

There are two reasons why I don’t do this.

The first is practical: there is much, much more data required, which has to be collected and then utilised. I would have to have team sheets for all games and assign some sort of value to each player. That would be very difficult to automate as a single part-time person. It is the sort of thing a betting company would do however because they have the resources.

The second reason is more philosophical. The idea that if you use more data you will get better predictions is somewhat misplaced. There is in team sports inherent randomness that cannot be dealt with no matter how much data is available. It is easy to point to games where you would never pick a team to win using any methodology but they still do win. Extra data and more sophisticated methods generally bring only marginal improvements in accuracy. Statistically the more data is used, the more variability is introduced in estimating effects.

You can always simply use some subjective estimates:

I give – 5 points for a fullback or 5/8 missing from the 17. -3 points for a Marquee player missing. -2 points for a regular player missing. I also give scores to aspects like Home/Away game, Avg points scored in a game, Avg unforced errors and so on. I have 30 key markers/aspects I score to make my prediction. (Dr Doug Wilde)

I would always want to have sound statistically based estimates of any quantities I used in a model, I am a statistician after all.

My aim in producing these predictions is to show the efficacy of very simple statistical methods using only limited data, and exponential smoothing in particular. I don’t recommend betting using these predictions and I never bet myself. I do know that a number of people use the predictions in tipping competitions. My advice is to use the predictions to indicate the form of teams in the competition adjusted for home ground advantage, then if there are other factors you consider important (injuries, the weather, a long-standing voodoo, …) modify my forecasts as you see fit.

June 15, 2022

Briefly

  • The Herald says House prices: ‘Another bloodbath’ as prices slump again in May for sixth straight month – REINZ figures. Estimates in the story range from 10-15% drop by the end of the year, and maybe 18% peak to trough.  In January, the Herald reported that prices had risen 30% in 2021, so even an 18% drop would leave prices about 10% higher than they were at the start of 2021.  So even the most optimistic forecast has housing prices pretty much keeping up with inflation over 2021-22.
  • Emma Vitz updated her housing price maps for the Spinoff, which you probably saw this time last year
  • Len Cook, former Government Statistician of New Zealand and former Chief Statistician of the UK, is Not Happy with the proposed  Data and Statistics Bill,  replacing the old Statistics Act.  As I said on Twitter, you don’t necessarily have to agree with Len, but you do need to pay attention to what he thinks.
  • Covid has now killed more White people in the US than Hispanic or Black or Asian, according to a New York Times story.  As this Twitter thread points out, that’s because of age differences in the populations of different ethnicities.  Mortality rates are lower for White people <45 than Black or Hispanic. The same is true for White people 45-64. And 65-74, and over 75. Because the White population averages older, the total numbers of deaths are higher — but that’s like the way deaths are higher in Australia than New Zealand because the population is larger.  Age standardisation is really important if you want to think about reasons for differences between groups
June 14, 2022

NRL Predictions for Round 15

Team Ratings for Round 15

The basic method is described on my Department home page.
Here are the team ratings prior to this week’s games, along with the ratings at the start of the season.

Current Rating Rating at Season Start Difference
Panthers 16.46 14.26 2.20
Storm 16.24 19.20 -3.00
Rabbitohs 7.68 15.81 -8.10
Sea Eagles 5.42 10.99 -5.60
Roosters 2.88 2.23 0.60
Cowboys 1.88 -12.27 14.10
Eels 1.66 2.54 -0.90
Sharks 0.51 -1.10 1.60
Broncos -0.46 -8.90 8.40
Raiders -1.14 -1.10 -0.00
Titans -6.20 1.05 -7.20
Dragons -7.47 -7.99 0.50
Bulldogs -8.47 -10.25 1.80
Warriors -9.92 -8.99 -0.90
Knights -10.51 -6.54 -4.00
Wests Tigers -10.57 -10.94 0.40

 

Performance So Far

So far there have been 108 matches played, 76 of which were correctly predicted, a success rate of 70.4%.
Here are the predictions for last week’s games.

Game Date Score Prediction Correct
1 Cowboys vs. Dragons Jun 10 31 – 12 11.10 TRUE
2 Titans vs. Rabbitohs Jun 11 16 – 30 -10.30 TRUE
3 Roosters vs. Storm Jun 11 18 – 26 -10.80 TRUE
4 Broncos vs. Raiders Jun 11 24 – 18 3.20 TRUE
5 Wests Tigers vs. Sea Eagles Jun 12 4 – 30 -11.20 TRUE
6 Knights vs. Panthers Jun 12 6 – 42 -22.30 TRUE
7 Warriors vs. Sharks Jun 12 16 – 38 -8.80 TRUE
8 Bulldogs vs. Eels Jun 13 34 – 4 -11.70 FALSE

 

Predictions for Round 15

Here are the predictions for Round 15. The prediction is my estimated expected points difference with a positive margin being a win to the home team, and a negative margin a win to the away team.

Game Date Winner Prediction
1 Dragons vs. Rabbitohs Jun 16 Rabbitohs -12.10
2 Sea Eagles vs. Cowboys Jun 17 Sea Eagles 6.50
3 Storm vs. Broncos Jun 17 Storm 19.70
4 Sharks vs. Titans Jun 18 Sharks 9.70
5 Warriors vs. Panthers Jun 18 Panthers -20.90
6 Eels vs. Roosters Jun 18 Eels 1.80
7 Raiders vs. Knights Jun 19 Raiders 12.40
8 Bulldogs vs. Wests Tigers Jun 19 Bulldogs 5.10

 

United Rugby Championship Predictions for the Final

Team Ratings for the Final

The basic method is described on my Department home page.
Here are the team ratings prior to this week’s games, along with the ratings at the start of the season.

Current Rating Rating at Season Start Difference
Leinster 16.79 14.79 2.00
Munster 9.78 10.69 -0.90
Ulster 9.27 7.41 1.90
Bulls 7.91 3.65 4.30
Stormers 7.06 0.00 7.10
Sharks 6.95 -0.07 7.00
Edinburgh 3.58 2.90 0.70
Glasgow -0.00 3.69 -3.70
Ospreys -0.83 0.94 -1.80
Scarlets -1.23 -0.77 -0.50
Connacht -1.60 1.72 -3.30
Lions -1.74 -3.91 2.20
Benetton -3.68 -4.50 0.80
Cardiff Rugby -7.42 -0.11 -7.30
Dragons -11.81 -6.92 -4.90
Zebre -16.99 -13.47 -3.50

 

Performance So Far

So far there have been 150 matches played, 109 of which were correctly predicted, a success rate of 72.7%.
Here are the predictions for last week’s games.

Game Date Score Prediction Correct
1 Leinster vs. Bulls Jun 11 26 – 27 17.20 FALSE
2 Stormers vs. Ulster Jun 12 17 – 15 4.80 TRUE

 

Predictions for the Final

Here are the predictions for the Final. The prediction is my estimated expected points difference with a positive margin being a win to the home team, and a negative margin a win to the away team.

Game Date Winner Prediction
1 Stormers vs. Bulls Jun 19 Stormers 4.20

 

Top 14 Predictions for the Semi-finals

Team Ratings for the Semi-finals

The basic method is described on my Department home page.
Here are the team ratings prior to this week’s games, along with the ratings at the start of the season.

Current Rating Rating at Season Start Difference
Stade Toulousain 7.81 6.83 1.00
La Rochelle 7.78 6.78 1.00
Bordeaux-Begles 6.47 5.42 1.10
Racing-Metro 92 5.75 6.13 -0.40
Clermont Auvergne 4.78 5.09 -0.30
RC Toulonnais 4.50 1.82 2.70
Lyon Rugby 3.61 4.15 -0.50
Montpellier 3.52 -0.01 3.50
Castres Olympique 3.23 0.94 2.30
Stade Francais Paris -0.71 1.20 -1.90
Section Paloise -1.81 -2.25 0.40
USA Perpignan -3.05 -2.78 -0.30
Brive -4.06 -3.19 -0.90
Biarritz -10.48 -2.78 -7.70

 

Performance So Far

So far there have been 183 matches played, 133 of which were correctly predicted, a success rate of 72.7%.
Here are the predictions for last week’s games.

Game Date Score Prediction Correct
1 Stade Toulousain vs. La Rochelle Jun 12 33 – 28 6.70 TRUE
2 Bordeaux-Begles vs. Racing-Metro 92 Jun 13 36 – 16 6.30 TRUE

 

Predictions for the Semi-finals

Here are the predictions for the Semi-finals. The prediction is my estimated expected points difference with a positive margin being a win to the home team, and a negative margin a win to the away team.

Game Date Winner Prediction
1 Castres Olympique vs. Stade Toulousain Jun 18 Stade Toulousain -5.90
2 Montpellier vs. Bordeaux-Begles Jun 19 Bordeaux-Begles -3.00

 

Super Rugby Predictions for the Super Rugby Final

 

Team Ratings for the Super Rugby Final

The basic method is described on my Department home page.
Here are the team ratings prior to this week’s games, along with the ratings at the start of the season.

Current Rating Rating at Season Start Difference
Crusaders 15.47 13.43 2.00
Blues 12.01 9.26 2.70
Hurricanes 7.70 8.28 -0.60
Chiefs 7.61 5.56 2.00
Brumbies 5.52 3.61 1.90
Highlanders 3.31 6.54 -3.20
Reds 0.26 1.37 -1.10
Waratahs -2.59 -9.00 6.40
Western Force -6.94 -4.96 -2.00
Rebels -8.27 -5.79 -2.50
Moana Pasifika -11.64 -10.00 -1.60
Fijian Drua -14.14 -10.00 -4.10

 

Performance So Far

So far there have been 90 matches played, 67 of which were correctly predicted, a success rate of 74.4%.
Here are the predictions for last week’s games.

Game Date Score Prediction Correct
1 Crusaders vs. Chiefs Jun 10 20 – 7 13.40 TRUE
2 Blues vs. Brumbies Jun 11 20 – 19 13.90 TRUE

 

Predictions for the Super Rugby Final

Here are the predictions for the Super Rugby Final. The prediction is my estimated expected points difference with a positive margin being a win to the home team, and a negative margin a win to the away team.

Game Date Winner Prediction
1 Blues vs. Crusaders Jun 18 Blues 2.00

 

Rugby Premiership Predictions for the Final

Team Ratings for the Final

The basic method is described on my Department home page.
Here are the team ratings prior to this week’s games, along with the ratings at the start of the season.

Current Rating Rating at Season Start Difference
Leicester Tigers 5.91 -6.14 12.00
Gloucester 5.08 -1.02 6.10
Saracens 4.24 -5.00 9.20
Sale Sharks 2.83 4.96 -2.10
Northampton Saints 2.68 -2.48 5.20
Exeter Chiefs 2.40 7.35 -4.90
Harlequins 1.89 -1.08 3.00
Wasps 1.12 5.66 -4.50
London Irish -2.88 -8.05 5.20
Bristol -4.25 1.28 -5.50
Bath -9.04 2.14 -11.20
Newcastle Falcons -9.08 -3.52 -5.60
Worcester Warriors -12.51 -5.71 -6.80

 

Performance So Far

So far there have been 155 matches played, 90 of which were correctly predicted, a success rate of 58.1%.
Here are the predictions for last week’s games.

Game Date Score Prediction Correct
1 Saracens vs. Harlequins Jun 12 34 – 17 5.60 TRUE
2 Leicester Tigers vs. Northampton Saints Jun 12 27 – 14 7.00 TRUE

 

Predictions for the Final

Here are the predictions for the Final. The prediction is my estimated expected points difference with a positive margin being a win to the home team, and a negative margin a win to the away team.

Game Date Winner Prediction
1 Leicester Tigers vs. Saracens Jun 19 Leicester Tigers 1.70

 

Currie Cup Predictions for the Semi Finals

Team Ratings for the Semi Finals

The basic method is described on my Department home page.
Here are the team ratings prior to this week’s games, along with the ratings at the start of the season.

Current Rating Rating at Season Start Difference
Cheetahs 5.69 -2.70 8.40
Bulls 4.93 7.25 -2.30
Griquas 0.89 -4.92 5.80
Pumas 0.83 -3.31 4.10
Sharks -1.30 4.13 -5.40
Western Province -3.24 1.42 -4.70
Lions -7.79 -1.88 -5.90

 

Performance So Far

So far there have been 41 matches played, 28 of which were correctly predicted, a success rate of 68.3%.
Here are the predictions for last week’s games.

Game Date Score Prediction Correct
1 Pumas vs. Griquas Jun 11 44 – 45 5.60 FALSE
2 Cheetahs vs. Bulls Jun 11 35 – 5 1.10 TRUE
3 Western Province vs. Sharks Jun 12 28 – 21 1.50 TRUE

 

Predictions for the Semi Finals

Here are the predictions for the Semi Finals. The prediction is my estimated expected points difference with a positive margin being a win to the home team, and a negative margin a win to the away team.

Game Date Winner Prediction
1 Bulls vs. Griquas Jun 19 Bulls 8.50
2 Cheetahs vs. Pumas Jun 19 Cheetahs 9.40