Broadening your data display palate — multivariate beer?
Nathan Yau at Flowing Data has a project page on multivariate beer. That is, he wants to use beer recipes to encode information about US counties taken from the American Community Survey:
The great thing about beer is that it has plenty of dimensions to work with: body, bitterness, head retention, hop profile, color, aroma, alcohol by volume, and plenty more. The amount of various ingredients affects how beer looks, tastes, and smells.
Still a work in progress, here’s how a beer recipe is formed.
- Greater head retention should increase with higher education, so a grain called Carapils is added.More hop aroma represents higher employment. This comes from more hops at the end of a boil and dry hopping.
- Rye adds spice and complexity to the beer as health care coverage increases.
- A darker-colored and more full-bodied beer comes from higher median household income and Crystal Malt 40.
- More hop bitterness and flavor means more people per square mile, and the type of hops — Cascade, Centennial, Citra, Warrior, and Magnum — represents the races of the population.
That sounds fun, but I’m not convinced by its possibilities for data communication.
People often want to use other senses than vision for data communication, because they would provide more dimensions. There are a couple of problems with this. First, the bandwidth and resolution of the other senses aren’t as good — for example, even a professional tea-taster can’t manage much over a thousand data points per day. Second, there’s encoding: the idea is to take advantage of the richness of experience from using all the senses, but it’s hard enough to work out how to encode numbers visually, and it will be much harder to come up with encodings for the other senses that convey accurate quantitative information.
Thomas Lumley (@tslumley) is Professor of Biostatistics at the University of Auckland. His research interests include semiparametric models, survey sampling, statistical computing, foundations of statistics, and whatever methodological problems his medical collaborators come up with. He also blogs at Biased and Inefficient See all posts by Thomas Lumley »